Whole-genome sequencing for syphilis, gonorrhoea and shigella epidemiology and control

David Eyre

Robertson Fellow and Honorary Consultant in Infection

Big Data Institute, University of Oxford June 2019

david.eyre@bdi.ox.ac.uk

What can whole-genome sequencing tell us?

- Reconstruct historical transmission events at a population scale
 - When did Syphilis come to Europe?

• Track the spread of infections in particular populations

- Shigella as a cause of colitis in MSM
- Track the spread of antibiotic resistance
 - Identifying the likely origin of cases of MDR/XDR gonorrhoea
- Individual transmission tracking
 - Understand local transmission networks, e.g. evidence for serosorting or associative selectivity
 - Enhanced partner notification
- Better diagnostics?

Decoding pathogen DNA: Sequencing

If infection spreads between two Pathogen DNA people the DNA of the bacteria is likely to be identical or very similar This DNA allows pathogens to be put into similar groups Bacterial DNA consists of one to a few million letters of genetic code -A, C, G or T Phylogenetic tree:

Two theories of how Syphilis came to Europe

Columbian theory

- Brought back to Europe by Christopher Columbus' crew
- Spread to Italy by the French during the siege of Naples in 1495 (via Spanish mercenaries)

Pre-Columbian

- Existed before descriptions in keeping with tertiary syphilis in ancient Greece
- Skeletons consistent with congenital syphilis from Pompeii

Can whole-genome sequencing tell us the answer?

Treponema pallidum: DNA capture

- First genome sequenced in 1998, but only a handful of genomes until 2016...
- Sequencing possible direct from clinical samples in primary and secondary syphilis using RNA 'baits'
 → allows selective capture of low concentrations of pathogen DNA

Cold Spring Harbor Protocols 2015.7 (2015): pdb-

NATURE MICROBIOLOGY 2, 16245 (2016)

Historical perspective

• 70 clinical samples 2012-13 and 18 historic samples from 1912 onwards

Success of the SS14 lineage likely multifactorial

• WGS of 73 samples from UK and USA + 49 previous sequences

Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages

Shigellosis as a sexually transmitted infection

- Outbreaks of colitis due to *Shigella flexneri* serotype 3a reported from 1970s, large UK outbreak in 2009 onwards in MSM
- *Shigella flexneri* serotype 3a from UK 2004-2013 sequenced together with isolates from 29 countries

Intercontinental dissemination of azithromycin-resistant Lancet Infect Dis 2015; shigellosis through sexual transmission: a cross-sectional study 15: 913–21

Cases associated with isolates from Asia or travel to Asia

Cases associated with isolates from Africa or travel to Africa

No travel to high risk areas for foodborne acquisition

MSM-outbreak lineage found predominant in men without a history of recent travel; of those with data on sexuality 40/41 MSM had MSM-outbreak lineage

Antibiotic resistance

	Associated resistances
Shigella resistance locus multidrug resistance element	
a _{oxa-1}	β-lactams
atA1	Chloramphenicol
adA1	Aminoglycosides
tet(B)	Tetracyclines
KSR100 (conjugative R-plasmid)	
erm(B)	Macrolides (erythromycin)
nph(A)	Macrolides (azithromycin)
lα _{тем}	β-lactams
KSR100 integron	
frA17	Trimethoprim
ul1	Sulfonamides
aadA5	Aminoglycosides
CERC1 (R-plasmid)	
dfrA14	Trimethoprim
sul2	Sulfonamides
strA	Aminoglycosides
strB	Aminoglycosides
ISM=men who have sex with men.	
able 3: Antibiotic resistance genes a nobile genetic elements in the MSM	nd associated resistances on -associated outbreak lineage

Also associated with other serotypes, e.g. 2a

and S. sonnei

Eurosurveillance

Intensified shigellosis epidemic associated with sexual transmission in men who have sex with men - Shigella *flexneri* and *S. sonnei* in England, 2004 to end of February 2015

Shigella sonnei

- In 2015, *Shigella sonnei*, isolated in 4 men in London
 - Macrolide resistant, but also ESBL
- pKRS100-like plasmid found (same as S. flexneri 3a outbreak), with additional bla_{CTX-M-27} gene
- Look back over WGS of all *S. sonnei* sent to PHE identified 9 patients within 5 SNPs, 7 identified as MSM, but no epidemiological links found between them

ESBL-Producing and Macrolide-Resistant Shigella sonnei Infections among Men Who Have Sex with Men, England, 2015

Tracking XDR gonorrhoea

• March 2018 – XDR gonorrhoea diagnosed

- Ceftriaxone resistant and high-level azithromycin resistance
- UK resident heterosexual male
- Recent sexual contact with female in Thailand

Key public health questions

- Where did this strain come from? → is it circulating elsewhere?
- How has it become resistant?
- What has this strain evolved from? What is its **potential to spread**?

Man has 'world's worst' super-gonorrhoea

By James Gallagher Health and science correspondent, BBC News

f 🔗 🎽 🔽 < Share

How do we use WGS to identify person-toperson transmission?

- Context from previous studies: 1407 sequences obtained from Brighton from 1061 genetically distinct infections
- How many genetic differences do we expect between recently transmitted genomes?
 - SNPs, single nucleotide polymorphisms

THE LANCET Infectious Diseases

Whole-genome sequencing to determine transmission of *Neisseria gonorrhoeae*: an observational study

Dilrini De Silva*, Joanna Peters*, Kevin Cole, Michelle J Cole, Fiona Cresswell, Gillian Dean, Jayshree Dave, Daniel Rh Thomas, Kirsty Foster, Alison Waldram, Daniel J Wilson, Xavier Didelot, Yonatan H Grad, Derrick W Crook, Tim E A Peto, A Sarah Walker, John Paul†, David W Eyre† Lancet Infect Dis 2016; 16: 1295–303

Within-sample diversity:

12-14 colonies picked from 6 randomly chosen samples

Anatomical site diversity:

Opportunistic sequencing of all patients with samples from more than one site

Transmission pairs 30 samples from 15 contact pairs

Both used together to estimate within-host diversity

Evolutionary rates:

Very little chronic infection, so estimated from time-scaled phylogenies

Transmission nomogram

Number of SNPs expected between isolates linked by direct or indirect transmission

Figure 3: Proportion of Brighton gonorrhoea infections genetically linked to another sampled case

Evidence of mixed HIV sero-status transmission clusters

Peters et al, 2017, STI

Dave et al, submitted

Black British / Black African / Black, Other

Clustering seen by reported sexual orientation, but not HIV status or ethnicity

Results do not support assortative selectivity as an explanation for infection rate differences between

Detecting antibiotic resistance mechanisms

- 681 samples sequenced from UK, USA, Canada, and WHO reference collections
- MICs determined by gold standard agar dilution in national surveillance
- Catalogue of common resistance determinants identified

Overall predict MIC to nearest doubling dilution 54% of assays and to within 1 doubling dilution 93% and to within 2 doubling dilutions 98%

Eyre et al, 2018 JAC

able 1.	Susceptibility-n	nodifying	genetic e	lements.11
---------	------------------	-----------	-----------	------------

Gene/element	Characteristic	Summary	Reference	AZM	CFX	CIP	PEN	TE
penA	allele	reduced β-lactam acetylation of PBP2	11,32,33		1		1	
	SNPs: A311V, I312M, V316T, V316P, T483S, A501V, N512Y, G545S, A501P, A501V, A501T, G542S, P5515, P5511	penA alleles were defined as described in the Methods sec- tion, and represent commonly occurring combinations of SNPs	11,25		1			
	SNPs: D3450, F504L, A510V, A516G, H541N, P551S, P551L, P552V, K555Q, I556V, I566V, N5733, A574V, A311V, I312M, V316T, V316P, T483S, A501V, N512Y, 6545S, A501P, A501V, A501T, G542S, P551L	additional contributions of individ- ual SNPs were also investigated	11,34				1	
mtrR promoter	deletion of A in repeat (-35A)	overexpression of MtrCDE efflux	35,36	1	1		1	1
disruption	$A \rightarrow C$ in repeat (-38)	pump	6,37					
	2 bp insertion		36					
	mtr120	novel promoter for MtrCDE efflux pump expression	38	1	1		1	1
mtrR	A39T	overexpression of MtrCDE efflux	39	1	1		1	1
	G45D	pump	39					
	truncation		13					
penB	G120K	reduced influx	40		1		1	1
(porB1b)	A121D/N		40					
ponA	L421P	reduced B-lactam acylation of	41		1		1	
(ponA1 allele)		PBP1						
pilQ	E666K	reduced influx via pore-forming se- cretin PilQ	42		1		1	
bla _{TEM}	bla _{TEM} -1/bla _{TEM} -135-encoding plasmids	penicillinase	43,44				1	
23S rRNA	C2611T	four copies of these genes present,	45	1				
	A2059G	increasing resistance with increased number of copies with SNPs via decreased binding to 50S ribosome	46					
erm(B), erm(C), erm(F)	presence	methylate 23S RNA to block binding	47	1				
macAB	promoter mutation	efflux pump overexpression	48	1				
mef	presence	efflux pump	49	1				
ere(A), ere(B)	presence	macrolide esterase	37	1				
gyrA	S91F	reduced quinolone binding to DNA	13,50			1		
	D95N/G	gyrase	13,50					
parC	D86N	reduced quinolone binding to topo-	13			1		
	S87R/I/W	isomerase IV	13					
	S88P		13,50					
	E91K		13,50					
norM	promoter mutation	overexpression of efflux pump	51			1		
rpsJ	V57M	reduced affinity of 30S ribosome for tetracycline	52					1
tetM	Dutch/American	TetM resembles elongation factor	53,54					1
plasmid	plasmid	G, binds 30S ribotype and pre- vents tetracycline binding						

UK XDR case vs. previous ceftriaxone resistant cases

Eyre et al, 2018 Eurosurveillance

What about resistance?

Ceftriaxone resistance from the most successful penA gene variant to date, azithromycin from the most common high-level resistance mutation

Gene	Variant	Mechanism	Antimicrobials affected
23S rRNA	A2059G, 4 copies	Decreased macrolide binding to 50S ribosome	AZM
penA	FC428 mosaic <i>penA</i> - 100% identity	Reduced β-lactam acylation of penicillin binding protein (PBP) 2	CRO, PEN
penB	G120K, A121D	Reduced influx through PorB1b	CRO, PEN, TET
mtrR	G45D, Promoter deletion	Over-expression of MtrCDE efflux pump resulting in increased efflux	AZM, CRO, PEN, TET
ponA	L421P	Reduced β-lactam acylation of PBP1	PEN
tetM	Gene presence	Prevents tetracycline binding to the 30S ribosome	TET
rpsJ	V57M	Reduced affinity of 30S ribosome for tetracycline	TET
gyrA	S91F, D95A	Reduced quinolone binding to DNA gyrase	CIP
parC	S87R	Reduced quinolone binding to topoisomerase IV	CIP

AZM: azithromycin; CIP: ciprofloxacin; CRO: ceftriaxone; PEN: benzylpenicillin; TET: tetracycline.

A further development...

MABC AUSTRALIA

UK man's super-gonorrhoea cured — but now two Australians have it

Updated 21 Apr 2018, 4:47am

Two Australian residents

- A male who reported sexual contact with a female in South East Asia
- A female who had no travel history outside of Australia Both had ceftriaxone-resistant gonorrhoea with high-level azithromycin resistance

Jennison et al, 2019, Eurosurveillance

10 SNPs

European transmission of ceftriaxone resistant gonorrhoea October – December 2018

- Two female patients developed gonorrhoea following contact with UKresident men from the same sexual network linked to travel to Ibiza, Spain
- Ceftriaxone resistant, intermediate susceptible to azithromycin

Both cases were genetically identical – suggesting recent common source

Rapid communication

Detection in the United Kingdom of the *Neisseria* gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Potential impacts

- Able to confirm likely transmission of ceftriaxone resistant gonorrhoea in Europe → public health response and raised public awareness
- Data from all cases from the FC428 clone suggest South East Asia or China, is the likely reservoir → need for enhanced surveillance in region
- Highlights the need for multifactorial interventions new drugs, ?vaccine, access to diagnostics, surveillance, test of cure, effective partner notification

What about sequencing as a routine diagnostic tool?

- Potential to
 - Detect presence of infection
 - Detect antibiotic resistance determinants
 - Enhance partner notification

Leeds real-time sequencing study

- Illumina based sequencing of positive cultures
- Investigate the utility of WGS for routine use alongside partner notification
- Aiming to return final report based by 14 day test of cure visit

WGS suggest the presence of unsampled common sources

Cluster containing 3 verified couples and 3 heterosexual females without matches

Direct from sample sequencing

Analysis → Final report, using database of antibiotic resistance determinants and previous sequences

Direct from sample sequencing

ONT sequencing direct from a patient urine sample: Urine sample A

Proof of principle: Resistance determinants identified within 8-12 hours

Conclusions

- Whole-genome sequencing can inform about historical and recent transmission events at a global and national scale
- Whole-genome sequencing can identify antibiotic resistant determinants and track their spread
- There is a challenge to know how best to use whole-genome sequencing in the clinic
 - It may be very helpful to identify antibiotic resistance
 - Genomic links allow the reach of partner notification to be potentially quantified
 - Active question about how to approach genomically linked cases not linked by routine partner notification

Acknowledgements

GU Medicine, Oxford

Emily Lord, Natasha Regisford-Reimmer, Anne Edwards

Microbiology, Oxford

 Monique Andersson, Markus Morgan, Robert Newnham

University of Oxford

• Teresa Street, Nicholas Sanderson, Kevin Chau, Leanne Barker, Derrick Crook, Tim Peto

XQX

Public Health

England

PHE

• Gwenda Hughes, Nick Phin Michelle Cole, Helen Fifer

WHO coordinating centre

• Daniel Golparian, Magnus Unemo

Australia

• Amy Jennison, David Whiley, Monica Lahra

Barts Health

NHS Trust

London

• Jayshree Dave

Brighton

• John Paul, Jo Peters, Keven Cole

Leeds

- Ling Yuan Kong, Mark Wilcox, Ines Moura
- Janet Wilson and rest of GU medicine team

UNIVERSITY OF LEEDS

FUNDED BY

Oxford University Hospitals

NHS Foundation Trust

Brighton and Sussex University Hospitals NHS Trust

