Chlamydia trachomatis & Mycoplasma genitalium—Microbiology and diagnostic tests.

Dr Peter Muir
Public Health Laboratory Bristol
Public Health England

Aims

• Chlamydia trachomatis
 • Replication and principles (problem) of culture
• Mycoplasma genitalium
 • Replication and principles (problem) of culture
• Principles of Nucleic Acid Amplification techniques (NAAT)
• What is the best genital tract specimen?
• Antimicrobial resistance
Chlamydia trachomatis

- Ocular trachoma recognised since antiquity
- Early 20th C: identical cytoplasmic inclusions seen in neonatal conjunctivitis and genital tract cells from both mother and father of a case
- Now known to cause NGU, PID, ectopic pregnancy, infertility, infantile pneumonitis

C. trachomatis – life cycle

Genetically ~stable
Low mutation rate
Intracellular niche

EB = elementary body (infectious) : RB = Reticulate body (replicative)
Tissue Culture
Intracellular requires continuous cell line

Iodine stain of *Chlamydia trachomatis*.
Chlamydia culture

- Sensitivity < 70%
- Not validated to UKAS standard
- No longer available in UK

Direct Immunofluorescence - stained with fluorescein conjugated specific monoclonal antibody
C. trachomatis – life cycle

EB = elementary body (infectious) ; **RB** = reticulate body (replicative)

Unfavourable growth conditions:
- Interferon gamma
- Penicillin

Chlamydia intracellular growth

- Cell death
- Production pro-inflammatory cytokines & chemokines
 - Interleukins: IL-8, IL-6,
 - Granulocyte-macrophage colony stimulating factor (GM-SF)
 - Tumour necrosis factor α (TNF α)
- Recruitment and activation immune response
 - Resolution infection vs collateral inflammatory damage tissue
- Persistence
 - Antimicrobial resistance

Menon S 2015 Clin Micro Rev
Mycoplasma genitalium

- One of eight mycoplasma species found in human genital tract
- First identified in 1983
- 1993: Proposed as cause of NCNGU
- Also causes cervicitis, PID
- 2015: third National Survey of Sexual Attitudes and Lifestyles strengthens evidence that *M. genitalium* is an STI
Mycoplasma genitalium

- Smallest known bacteria

M. genitalium life cycle

- Very slow growing
 - Epithelial cells – endocervical and ectocervical
 - Non-keratinized?
- Replication
 - Extracellular
 - Intracellular
- High mutation rate
- Antimicrobial resistance
M. genitalium intracellular growth

- Cell death – only at high infectious loads
- Production pro-inflammatory cytokines & chemokines
 - Interleukins: IL-8, IL-6,
 - granulocyte-macrophage colony stimulating factor (GM-SF)
 - ?Less marked than with chlamydia (no TNF)
- ?Recruitment and activation Immune response
 - ?Resolution infection vs collateral inflammatory damage tissue

McGowin C. Inf & Immun 2012; 80:3842

Human fallopian tube explant culture

Baczynska A. Hum Repro 2007; 22:968–979
Nucleic Acid Amplification Techniques (NAAT) for STI diagnosis

- Test of choice for detecting bacterial, protozoal and viral STIs
- Multiple technologies
- Point of care NAATs
- Genotypic antimicrobial resistance tests beginning to become available

<table>
<thead>
<tr>
<th>Commercially available NAAT kits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SDA</td>
</tr>
<tr>
<td>TMA</td>
</tr>
</tbody>
</table>
Commercial NAATs

- *Chlamydia trachomatis* (usually combined with *Neisseria gonorrhoeae*)
 - Laboratory – Roche, Hologic, BD, Abbott
 - Point of care - Cepheid
- *M. genitalium*
 - Laboratory – Hologic, SpeeDx, Biorad
 - Point of care – Cepheid (soon!)

Commercial NAATs

- *M. genitalium* macrolide resistance (23S rRNA)
 - Laboratory – SpeeDx, Seegene
 - Point of care – Cepheid (soon!)
Components of a NAAT test

• Three steps:
• Nucleic acid extraction

DNA/RNA extraction

• Heat
• Lysis/Chemical
• Mechanical
• +/- Purification/extraction step (Aptima)
 • Removes inhibitors (blood, protein, mucus, some spermicidal agents, feminine powder sprays)
• Automated vs manual – high throughput or small numbers
Components of a NAAT test

• Three steps:
 • Nucleic acid extraction
 • Nucleic Acid Amplification
 • Transcription-mediated amplification
 • Polymerase chain reaction
 • Strand displacement amplification
PCR Amplifies a Targeted Sequence

DNA Structure

Hydrogen Bonds

Cytosine (C)
Adenine (A)
Thymine (T)
Guanine (G)
Deoxyribose (Sugar molecule)

Phosphoric Acid (Phosphate molecule)
PCR Cycle – Step 1 - Denaturation by Heat

Target Sequence

PCR Cycle – Step 2 - Biotinylated Primer Pair Anneals to Ends of Target Sequence

Target Sequence

Primer 1

Primer 2

Biotin

Target Sequence
PCR Cycle - Step 3 - *Taq* DNA Polymerase Catalyses Primer Extension as Complementary Nucleotides are Incorporated

End of the 1st PCR Cycle - Results in Two Copies of Target Sequence
Target Amplification

<table>
<thead>
<tr>
<th>Cycles</th>
<th>No. of Amplicon</th>
<th>No. of Cycles</th>
<th>Copies of Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>20</td>
<td>1,048,576</td>
<td>20</td>
<td>1,048,576</td>
</tr>
<tr>
<td>30</td>
<td>1,073,741,824</td>
<td>30</td>
<td>1,073,741,824</td>
</tr>
</tbody>
</table>

Components of a NAAT test

- Three steps:
 - Nucleic acid extraction
 - Nucleic Acid Amplification
 - Transcription-mediated amplification
 - Polymerase chain reaction
 - Strand displacement amplification
 - Detection of amplification products
 - Real-time PCR e.g. Taqman probes
Classic Nucleic Acid Amplification Tests e.g. PCR

One way flow:

- Sample preparation ↓
- Amplification ↓
- Detection ↓

Step 4 - Denaturation and Hybridisation
eg conventional PCR
Detection stage and Measurement of absorbance: Conventional PCR

1. Temperature is raised to 94°C to denature strands
1. Temperature is raised to 94°C to denature strands

2. As temperature is lowered, the probe binds to the target at around 70°C. The quencher stops the reporter from fluorescing.
1. Temperature is raised to 94°C to denature strands.

2. As temperature is lowered the probe binds to the target at around 70°C. The quencher stops the reporter from fluorescing.

3. When the temperature reaches 60°C the primers bind.

4. Taq polymerase extends the new strand at 60°C.

5. Taq polymerase degrades the probe releasing the reporter from the quencher. The reporter fluoresces. The process then repeats in the next cycle.

<table>
<thead>
<tr>
<th>cycles</th>
<th>amplicons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
</tr>
<tr>
<td>16</td>
<td>65536</td>
</tr>
<tr>
<td>17</td>
<td>131072</td>
</tr>
<tr>
<td>18</td>
<td>262144</td>
</tr>
<tr>
<td>19</td>
<td>524288</td>
</tr>
<tr>
<td>20</td>
<td>1048576</td>
</tr>
<tr>
<td>21</td>
<td>2097152</td>
</tr>
<tr>
<td>22</td>
<td>4194304</td>
</tr>
<tr>
<td>23</td>
<td>8388608</td>
</tr>
<tr>
<td>24</td>
<td>16777216</td>
</tr>
<tr>
<td>25</td>
<td>33554432</td>
</tr>
<tr>
<td>26</td>
<td>67108864</td>
</tr>
<tr>
<td>27</td>
<td>134217728</td>
</tr>
<tr>
<td>28</td>
<td>268435456</td>
</tr>
<tr>
<td>29</td>
<td>536870912</td>
</tr>
<tr>
<td>30</td>
<td>1073741824</td>
</tr>
</tbody>
</table>
Applied Biosystems Prism 7000/7500

TaqMan PCR

Delta Rn vs Cycle

Cycle Number

Delta Rn
Real-Time PCR - quantification

High organism load

Ct = cycle threshold
What is the best specimen?

- Women
 - Vulvovaginal better than endocervical
 - Chlamydia - time since last sexual intercourse may be relevant - 20% women detection negative after ~2 weeks
 - *M. genitalium* can infect vaginal epithelial cells
 - Historically first void urine (FVU) less sensitive
 - Chlamydia - good performance with 2nd generation assays
- Men
 - FVU equivalent to intra-urethral swab

NAATS and menstruation

- Blood potential inhibitor NAATs
 - Roche, Abbott and BD assays
- Tampon may reduce chlamydia load in vagina
 - Unclear if an FVU specimen if menstruating would perform better as a non-invasive specimen.
Extra-genital sites - NAATS

- Originally not FDA approved or CE marked
- Now rectal swabs and throat swabs are validated on several commercial platforms

Testing low prevalence populations.

- Sensitivity
 Proportion of true positives correctly identified.
- Specificity
 Proportion of true negatives correctly identified.
Testing low prevalence populations

Prevalence = 1%, 1,000 screened

Sensitivity = 99%
10 true positives
0 false negative

Specificity = 99%
980 true negatives
10 false positives

Testing low prevalence populations

Prevalence = 1%, 1,000 screened

Sensitivity = 99%
10 true positives
0 false negative

Specificity = 99.9%
989 true negatives
1 false positive
Prevalence 1%, 1,000 screened

- If Sensitivity = 99%, specificity = 99%
 Total number of positives = 20
 True positives = 10
 Predictive value positive = 50%

- If Sensitivity = 99%, specificity = 99.9%
 Total number of positives = 11
 True positives = 10
 Predictive value positives = 91%

Useful references

- Horner PJ. Azithromycin antimicrobial resistance and genital Chlamydia trachomatis infection: duration of therapy may be the key to improving efficacy. *Sex Transm Infect* 2012; 88(3):154-156.